The anabolic effect of PGE2in rat bone marrow cultures is mediated via the EP4 receptor subtype.

نویسندگان

  • M Weinreb
  • A Grosskopf
  • N Shir
چکیده

Prostaglandin E2(PGE2) is an anabolic agent in vivo that stimulates bone formation by recruiting osteoblasts from bone marrow precursors. To understand which of the known PGE2 receptors (EP1-4) is involved in this process, we tested the effect of PGE2 and various EP agonists and/or antagonists on osteoblastic differentiation in cultures of bone marrow cells by counting bone nodules and measuring alkaline phosphatase activity. PGE2increased both parameters, peaking at 100 nM, an effect that was mimicked by forskolin and was abolished by 2',3'-dideoxyadenosine (an adenylate cyclase inhibitor) and was thus cAMP dependent, pointing to the involvement of EP2 or EP4. Consistently, 17-phenyl-ω-trinor PGE2(EP1 agonist) and sulprostone (EP3/EP1agonist) lacked any anabolic activity. Furthermore, butaprost (EP2 agonist) was inactive, 11-deoxy-PGE1(EP4/EP2agonist) was as effective as PGE2, and the PGE2 effect was abolished dose dependently by the selective EP4 antagonist AH-23848B, suggesting the involvement of EP4. We also found that PGE2 increased nodule formation and AP activity when added for the initial attachment period of 24 h only. Thus this study shows that PGE2 stimulates osteoblastic differentiation in bone marrow cultures, probably by activating the EP4 receptor, and that this effect may involve recruitment of noncommitted (nonadherent) osteogenic precursors, in agreement with its suggested mode of operation in vivo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An EP2 receptor-selective prostaglandin E2 agonist induces bone healing.

The morbidity and mortality associated with impaired/delayed fracture healing remain high. Our objective was to identify a small nonpeptidyl molecule with the ability to promote fracture healing and prevent malunions. Prostaglandin E2 (PGE2) causes significant increases in bone mass and bone strength when administered systemically or locally to the skeleton. However, due to side effects, PGE2 i...

متن کامل

Osteopontin deficiency enhances anabolic action of EP4 agonist at a sub-optimal dose in bone.

Osteoporosis is one of the most widespread and destructive bone diseases in our modern world. There is a great need for anabolic agents for bone which could reverse this disease, but few are available for clinical use. Prostaglandin E receptor (EP4) agonist (EP4A) is one of the very few anabolic agents for bone in rat, but its systemic efficacy against bone loss at sub-optimal dose is limited i...

متن کامل

Prostaglandin E(2) regulates murine hematopoietic stem/progenitor cells directly via EP4 receptor and indirectly through mesenchymal progenitor cells.

Prostaglandin E(2) (PGE(2)) regulates hematopoietic stem/progenitor cell (HSPC) activity. However, the receptor(s) responsible for PGE(2) signaling remains unclear. Here, we identified EP4 as a receptor activated by PGE(2) to regulate HSPCs. Knockdown of Ep4 in HSPCs reduced long-term reconstitution capacity, whereas an EP4-selective agonist induced phosphorylation of GSK3β and β-catenin and en...

متن کامل

Effect of Lithium Chloride on Proliferation and Bone Differentiation of Rat Marrow-Derived Mesenchymal Stem Cells in Culture

Objective(s) It is believed that the mesenchymal stem cell (MSC) differentiation and proliferation are the results of activation of wnt signaling pathway. On the other hand, lithium chloride is reported to be able to activate this pathway. The objective of this study was to investigate the effect of lithium on in vitro proliferation and bone differentiation of marrow-derived MSC. Materials and ...

متن کامل

Induction of Mineralized Nodule Formation in Rat Bone Marrow Stromal Cell Cultures by Silk Fibroin

Background: Silk fibroin is a suitable protein for osteogenesis by inducing markers of bone formation in the cultures of osteoblasts, so we examined the ability of this protein to induce mineralized nodules in the rat bone marrow stromal cell cultures. Methods: Bone marrow stromal cells obtained from 4 to 6 weeks old Spruge-Dawely male rats were grown in primary culture for seven days and then ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 276 2  شماره 

صفحات  -

تاریخ انتشار 1999